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Abstract—Over the past two decades several approaches for
modelling (spatially) correlated shadowing in mobile commu-
nication environments have been proposed. One prominent
implementation is the pre-generation of shadowing maps rep-
resenting the shadowing loss for geographic locations. However,
the majority of these models do only consider shadowing
fluctuation with respect to only a single reference location of
the non-mobile end of a communication link. Here, the amount
of resources needed significantly increases in case multiple
reference locations are required. In this paper a resource
efficient approach for modelling spatially correlated shadowing
in computer simulations for mobile (ad-hoc) networks reducing
the complexity from O

(
n2

)
to O

(
n
)

is proposed. Hence, it
may advantageous specifically for complex computer simula-
tions utilising hardware commonly available.

Keywords-Mobile ad-hoc networks, simulation, channel mod-
els.

I. INTRODUCTION

Computer simulation is a fundamental method used within
the scientific community to evaluate concepts underlying
new technologies. Stochastic discrete event simulation is a
typical approach used in this scope to assess the performance
of systems with a certain degree of confidence. When per-
forming system level simulations certain details of a system
need to be abstracted in order to achieve results within a
finite amount of time. However, the process of abstraction
requires careful consideration to ensure the overall system
behaviour will not be adversely affected by the limitations
and underlying assumptions of the abstraction. Additionally,
the validity of results achieved by computer simulations
strongly depends on the accuracy of simulation models
and how closely they reflect the real system within its
environment.

The simulation of communication networks often requires
models of high complexity based on the amount of detail
involved in modelling protocol layers. For the investigation
of the performance of wireless networks a realistic repre-
sentation of the physical layer and the channel conditions
is essential [1]. The radio signal emitted by a node in a
(mobile) wireless network is affected by transmission losses,
which can be classified into three parts: a distance-dependent
large-scale path loss, shadowing loss (long-term fading) due

to large objects in the communication path such as hills or
buildings, and non-shadowing loss (short-term fading) due to
multi-path propagation (reflection and scattering) [2]. Using
logarithmic (dB) values the total path loss can be expressed
as

Li,j = γ(di,j) + θi,j + χi,j , (1)

where di,j represents the Euclidean distance between nodes
i and j, γ(·) is the large-scale path loss, θ is the shadowing
loss, and χ represents the non-shadowing loss.

In system level simulations shadowing is sometimes
modelled as an uncorrelated random process with a log-
normal distribution. Although an uncorrelated process is
easy to compute during simulation, spatial correlation has a
significant impact on system performance [3], [4], [5]. Since
shadowing loss is a spatially correlated quantity, the need for
a realistic model including correlation arises in the perfor-
mance evaluation of mobile ad-hoc networks (MANETs).
Furthermore, omitting correlation can lead to significant
drawbacks when investigating (closed) loop systems such
as adaptive modulation and coding [6], [7] which exploit
the correlated nature of the shadowing environment.

Over the past two decades several approaches for mod-
elling correlated shadowing have been proposed. In 1991,
Gudmundson described a one-dimensional model [8] for
the autocorrelation function of shadowing. Graziosi and
Santucci derived an extended correlation model [9] for the
cross-correlation function of the shadowing contributions
affecting the links between a mobile node and two base
stations based on Gudmundson’s autocorrelation model. A
model for spatially cross-correlated shadowing in distributed
radio access networks was presented in [5]. Patwari and
Agrawal investigated the effects of correlated shadowing in
[10] and introduced a joint shadowing model for links in a
multi-hop network. The core idea behind this model is that
losses from shadowing are attributed to an underlying spatial
loss field [11], [12].

In addition to these publications several approaches based
on pre-generated maps have been proposed. Forkel et al.
introduced a method how to generate two-dimensional cor-
related shadowing using two-dimensional convolution [13].



In [14] Catrein and Mathar presented a model employing
Gaussian random fields and isotropic correlation functions.
A method for the generation of channel attenuation maps
including both large-scale path loss and shadowing loss
was presented in [15]. Wang et al. have shown that in a
single mobility scenario the autocorrelation function of the
shadowing for mobile radio networks can be well modelled
by an exponential decay function. Furthermore they have
proposed to approximate the joint spatially correlated shad-
owing fluctuation for peer-to-peer (P2P) radio links in dual
mobility scenarios by the product of two autocorrelation
functions (ACFs) in single mobility scenario [16], [17]. This
approach can take the mobility of both the transmitting and
receiving node into account.

The majority of the map-based models presented in this
section do only consider shadowing fluctuation with respect
to a single reference location of the non-mobile end of a
communication link and their computational complexity may
significantly increase in case multiple reference locations
are required. Therefore, this paper contributes a resource
efficient approach taking into account multiple reference
locations while reducing the complexity in terms of (main)
memory occupation from O

(
n2

)
to O

(
n
)
.

The remainder of this paper is organised as follows:
Section II describes the proposed shadowing model and its
applicability to mobile ad-hoc network simulations. Numer-
ical results are presented in Section III showing the most
important characteristics of the proposed model. Finally,
Section IV concludes the paper.

II. PROPOSED SHADOWING MODEL

A. Preliminary Requirements
As described in [15], the computational complexity of a

model is a scaling factor which should not be neglected.
To reduce computational requirements in system level sim-
ulations, a shadowing map realised as a lookup table is
preferable. Overall, a correlated shadowing model has to
meet the following constraints:

(i) Isotropic autocorrelation function (ACF), i.e. the
statistical properties are independent of the direction
of movement

(ii) ACF equal to Gudmundson’s correlation model
(iii) Low computational complexity in terms of physical

memory occupation during system level simulation

B. Generation of Correlated Shadowing Map
As the shadowing model presented in [13] exhibits rel-

atively low complexity in generating the two-dimensional
correlated shadowing maps by simply employing a two-
dimensional convolution of a matrix of Gaussian random
values and a correlation matrix, it serves as the basis
for our enhanced approach. To achieve spatial correlation,
Forkel et al. applied the normalised autocorrelation function

R(∆x) = e−
|∆x|
dcorr

ln(2) (2)

from [8], where ∆x represents the increasing distance in
x-direction and dcorr is the decorrelation distance. However,
we found that this model does not meet constraint (i).

In contrast to [13], we propose the use of an enhanced
two-dimensional normalised autocorrelation function

R(∆x,∆y) = e−
√

∆x2+∆y2

dcorr
ln(2) (3)

for both negative and positive values of ∆x and ∆y.
Applying the Fourier transform to (3) leads to the following
relation

F {R(∆x,∆y)} = PSD(ω1, ω2) = |G(ω1, ω2)|2, (4)

where F {·} represents the Fourier operator, and PSD(·)
and |G(·)|2 are the power spectral density and the squared
magnitude spectrum, respectively.

Utilising a numerical frequency sampling filter design
approach, a finite impulse response (FIR) filter can be de-
vised for which the channel impulse response is equal to the
inverse Fourier transformation of G(ω1, ω2). After applying
the FIR filter (which can be achieved by a two-dimensional
convolution) to the uncorrelated Gaussian values of the map
a shadowing map consisting of spatially correlated values is
obtained.

Another approach for generating the shadowing map is
to perform the calculation in the frequency domain by
transforming both the two-dimensional ACF R(∆x,∆y) and
the uncorrelated Gaussian valued map using Fourier trans-
form. We found the frequency domain approach actually
shows better performance with respect to both accuracy and
computation time.

C. Applicability to Mobile Ad-hoc Network Simulations

The most realistic representation of correlated shadowing
in an infrastructure-less mobile network is to provide a
correlated shadowing value for each coordinate to every
single point on the map. For a two-dimensional scenario, the
total number of entries of such a four-dimensional lookup
table is then given by

K = (M ×N)
2 , (5)

where M and N represent the map dimension in elements
in y- and x-direction, respectively. Assuming a map where
M = N = 1, 000 and each map entry needs one byte of
memory the total memory needed for a single shadowing
map would be one terabyte. This amount of storage is
typically not available in many of the usual computing
platforms used by the research community and therefore an
approach resulting in a much smaller amount of memory is
required. The approach of modelling correlated shadowing
by using pre-defined maps was originally developed for
scenarios where at least one of the two communicating nodes
is fixed. A typical representation of this scenario is a cellular
communication network with fixed base stations and mobile



nodes. Hence, the values within the shadowing map are
calculated with respect to a certain point of reference, i.e.
the position of the base station. In case of infrastructure-
less networks such as MANETs, the shadowing map needs
reformatting to keep memory requirements manageable as
shown in (5).

To overcome issues with scaling computational complex-
ity, i.e. exponential increase in required memory, we propose
to apply an abstracted model following the concept of a
spatial loss field describing the shadowing fluctuations. To
achieve a further abstraction of the model described in [11],
we propose to calculate the shadowing loss θi,j as the sum
of the shadowing losses at both ends of a communication
link between node i and node j. The total shadowing loss
θi,j is then given by

θi,j = θj,i = ϑ(xi, yi) + ϑ(xj , yj), (6)

where ϑ(xi, yi) and ϑ(xj , yj) are the values of the local
shadowing for the two-dimensional position of nodes i and
j, respectively. Since for our model shadowing fluctuation
is described as a Gaussian random process

N
(
µ, σ2

)
, (7)

where µ is the mean value and σ2 represents the variance,
it can be easily shown that this approach does not affect the
characteristics of the random distribution.

Proof: As for the summation of stochastically indepen-
dent variables from a Gaussian (or: normal) distribution the
following interrelations apply:

σ2 = σ2
1 + σ2

2 + . . .+ σ2
n (8)

µ = µ1 + µ2 + . . .+ µn, (9)

it is obvious that for µ = µ1 = µ2 = 0 and σ2
1 = σ2

2 = σ2/2
the utilisation of (6) does not alter the statistical character-
istics of (7).

Hence, the variance of the spatially correlated log-normal
shadowing values in the map has to be adjusted to be equal
to σ2

l /2 to generate shadowing maps with a desired standard
deviation σl for a link within a mobile network. According
to (10), with the proposed approach the total number of map
entries K remains at the same size as for the original two-
dimensional map.

K = (M ×N) (10)

As evident from (5) and (10) the proposed approach reduces
the computational complexity from O

(
n2

)
to O

(
n
)

and
therefore this model can be easily applied to typical semi-
mobile network simulations without increasing physical
memory occupation.

D. Limitations of the Proposed Shadowing Model

As for all statistical models, some limitations apply to our
shadowing model.

(i) The model is designed for two-dimensional de-
ployments. However, it can be adapted to a three-
dimensional model by creating a transformation of a
three-dimensional autocorrelation function.

(ii) The proposed model is only valid for distances di,j
between nodes i and j which are larger or equal to
the decorrelation distance dcorr. For di,j < dcorr the
variance σ2 of the sum of the two shadowing values
ϑ(xi, yi) and ϑ(xj , yj) will increase significantly
due to the spatially correlation. To consider distances
smaller than dcorr one can apply separate maps for
each node. This way, the values in the different maps
remain statistically independent of each other.

(iii) As the total shadowing loss θi,j of a certain link li,j
between nodes i and j is determined by equation
(6) the resulting ’shadowing channel’ is symmetrical
for both the uplink (UL) and the downlink (DL).
However, in some cases an asymmetrical channel
behaviour is necessary. This can be achieved by
simply using two shadowing maps, i.e. one for each
transmission direction (UL/DL).

(iv) Finally, in case a single node is mobile while all
its neighbours are static, the difference ∆θ of the
shadowing losses from node i to the set of neighbour
nodes {j, k, . . . , n} is given by

∆θi,j = ∆θi,k = . . . = ∆θi,n . (11)

As the probability of such a scenario is low in mobile
(ad-hoc) networks, we expect the effect of this on the
average performance to be negligible.

III. NUMERICAL RESULTS

Figure 1 shows a detail from a spatially correlated shad-
owing map of size 2,500 m×2,500 m with a resolution ∆s
of 2.5 m, a decorrelation distance dcorr of 20 m, a mean
value µ of 0 dB, and a link standard deviation σl of 10 dB.
In Figure 2 (a) the one-dimensional autocorrelation functions
of the given map are depicted. The ACF along the x-axis
as well as at a 45 degree angle follow the theoretical ACF
given by Gudmundson. The related two-dimensional ACF
shown in Figure 2 (b) is of isotropic shape and therefore
we can claim the correlation to be independent from the
direction of movement. Furthermore, as evident from Figure
3, the proposed approach shows an occupation of physical
memory which is significantly reduced compared to a four-
dimensional lookup table.

IV. CONCLUSIONS

In this paper, we have derived a resource efficient model
how to simulate two-dimensional spatially correlated log-
normal shadowing. The proposed model fulfils the require-
ment of an isotropic (two-dimensional) ACF which is in-
dependent of the direction of movement. We have also
shown how this model can be applied to simulations of
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(a) One-dimensional autocorrelation functions.
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(b) Two-dimensional autocorrelation function.

Figure 2. Investigation of the properties of the proposed model.
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Figure 1. Detail from two-dimensional spatially correlated shadowing
map (A = 2, 500 m× 2, 500 m, ∆s = 2.5 m, dcorr = 20 m), µ = 0 dB,
σl = 10 dB.

semi-mobile (ad-hoc) networks as the total shadowing loss
is calculated by the sum of the shadowing losses at the
positions of the transmitting and receiving node. It was
shown, that in cases where variable positioning of both
the static and the mobile end of a communication link is
required, the proposed approach is significantly reducing the
computational complexity to O

(
n
)

compared to the baseline
of a four-dimensional lookup table having a computational
complexity O

(
n2

)
.

Although the proposed approach is primarily designed for
semi-mobile scenarios it may be applied to scenarios of com-
plete mobility by on-demand loading of small maps created
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Figure 3. Physical memory occupation of the proposed model (assumption:
one byte per map entry).

for every grid square. We expect this to be more resource
efficient - especially in terms of main memory occupation
- compared to a single map consisting of shadowing values
for all combinations of grid squares. Hence, this approach
may beneficial specifically for the simulation of scenarios of
large geographical expansion and/or high resolution utilising
hardware commonly available.
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