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1 Introduction
Space-Time Block Codes (STBCs) are in general designed to achieve a transmit di-
versity gain and have been first proposed in 1998 by Siavash Alamouti [1].

Diversity is typically used for wireless communication systems to mitigate fading.
Thereby, fading implies variations in the received signal power which occur due to
multipath propagation, deflections, shadowing, etc. If a channel is in a deep fade the
signal strength is very low which can lead to tremendous bit error rates.
Basically, diversity means that several copies of the same information (but not nec-
essarily of the same transmit signal) are used. To achieve the best results, all links
should be used to transmit one of these copies.
Considering the specific realization, different degrees of freedom can be utilized to
benefit from a diversity gain, namely space, time and frequency. For spatial diver-
sity several antennas are used. Thereby, the antennas can be all located on the same
transmitter (co-located setup) or several transmitters each equipped with one single
antenna are used (distributed setup). A time diversity can be achieved if the copies
are spread over several time slots. In contrast, different sub-carriers on varying carrier
frequencies are used for frequency diversity.

One very important reference paper summarizing the achievable diversity gain for
MISO systems has been published by Tarokh et al. in 1998 [2]. With this research
work, the authors could prove that the maximum achievable diversity gain in a MISO
system is equal to the number of transmitters NTX. Moreover, they deliver a rank and
determinant criterion. While the rank criterion defines conditions for a space code to
reach the maximal diversity gain, the determinant criterion defines those conditions
which are necessary to reach a coding or respectively SNR gain.

A diversity gain becomes visible in a BER vs. SNR comparison. It increases the
slope of the graph. The higher the diversity gain, the higher the slope’s magnitude,
whereby the magnitude is exactly equal to the diversity gain. Contrary, a SNR gain
leads to a shift to the left on the x-axis.

Subsequently, some outstanding STBCs are presented with some detail. For the
further description of the different coding schemes a representation in matrix form
is quite convenient. Thereby, the rows of the matrix are assigned to the time or
respectively time slots while the columns correspond to the different transmitting
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1 Introduction

nodes or, respectively, antennas. A matrix representation for a coding scheme, where
3 symbols are transmitted in 4 time slots could look like:

C =


x1 x2 x3

−x3 x∗
1 −x2

x∗
1 −x∗

3 −x∗
2

x∗
3 x∗

2 −x1

 (1.1)

From the coding matrix it can be directly observed, that antenna 1 transmits x1, −x3,
x∗

1 and x∗
3 in four consecutive time slots. Similarly, antenna 2 transmits x2, x∗

1, −x∗
3

and x∗
2 while antenna 3 sends x3, −x2, x∗

2 and −x1.

Furthermore, the matrix allows to determine the code rate RC which is defined as
the ratio between the number of different information symbols and the necessary time
slots for the transmission. For the example above, it follows for RC that

RC = 3
4 = 0.75 = 75%. (1.2)

STBCs can be classified with respect to the channel state information (CSI). Thereby,
it is distinguished between codes which require

• no CSI at all,

• CSI at the transmit side (CSIT) and

• CSI at the receiving side (CSIR).

From main interest are those codes which rely on CSIR. This is because, CSIT is very
complex to achieve especially for large scale networks. In contrast, differential STBCs
which do not need any CSI and that were first introduced by Tarokh and Jafarkhani
in [3] involve a huge decoding effort.

All presented examples, expect for the Alamouti code, are based on a setup where
four transmit signals (NTX = 4) are required. This could either be a single node
equipped with four transmit antennas or equivalently four single-antenna nodes. Un-
fortunately, the Alamouti code is limited to NTX = 2.
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2 Alamouti Code
According to [1] the encoding matrix of the Alamouti scheme is given as

XAlamouti =
[

α1 α2
−α∗

2 α∗
1

]
. (2.1)

So, the physical signal on the channel ych assuming a quasi-static fading environment
follows as

ych = XAlamouti · h =
[

α1 α2
−α∗

2 α∗
1

]
·
(

h1
h2

)
=
(

α1h1 + α2h2
−α∗

2h1 + α∗
1h2

)
=
(

α1h1 + α2h2
α∗

1h2 − α∗
2h1

)
.

(2.2)

Using this expression, the equivalent channel matrix H can be denoted as

H =
[
h1 h2
h∗

2 −h∗
1

]
, (2.3)

so, that

y = H · α =
[
h1 h2
h∗

2 −h∗
1

]
·
(

α1
α2

)
=
(

α1h1 + α2h2
α1h

∗
2 − α2h

∗
1

)
=
(

y1
y2

)
=
(

ych,1
y∗

ch,2

)
. (2.4)

Decoding can be performed by a multiplication with HH . Hence,

α̂ = HH · y = HH · H · α. (2.5)

Assuming quasi-static channels the orthogonality is given, wherefore

HH · H =
[
h∗

1 h2
h∗

2 −h1

]
·
[
h1 h2
h∗

2 −h∗
1

]
= (|h1|2 + |h2|2) ·

[
1 0
0 1

]
. (2.6)

Thus, decoding can be also formulated as

α̂1 = h∗
1 · ych,1 + h2 · y∗

ch,2 and α̂2 = h∗
2 · ych,1 − h1 · y∗

ch,2. (2.7)

Inserting ych,1 and y∗
ch,2, these equations become

α̂1 = h∗
1 · (α1h1 + α2h2) + h2 · (α1h

∗
2 − α2h

∗
1)

α̂2 = h∗
2 · (α1h1 + α2h2) − h1 · (α1h

∗
2 − α2h

∗
1).

(2.8)
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2 Alamouti Code

Simplifying directly leads to

α̂1 = α1h1h
∗
1 +����α2h2h

∗
1 + α1h

∗
2h2 −����α2h

∗
1h2 = α1 · (|h1|2 + |h2|2)

α̂2 = ����α1h1h
∗
2 + α2h2h

∗
2 −����α1h

∗
2h1 + α2h

∗
1h1 = α2 · (|h1|2 + |h2|2).

(2.9)

The interference terms cancel and a sum of the channel coefficients’ absolute values is
left which is the typical behaviour for OSTBC in a quasi-static environment. However,
this beneficial bearing is lost in a time-variant environment. If a different Rayleigh-
fading channel vector is used for every time-slot, the signal on the physical channel
has to be expressed as

ych = XAlamouti · h(t) =
(

α1h11 + α2h21
α∗

1h22 − α∗
2h12

)
. (2.10)

Thus, the equivalent channel matrix H has to be adapted to

H =
[
h11 h21
h∗

22 −h∗
12

]
(2.11)

The orthogonality is lost which becomes evident with respect to the decoding rule, i.
e.

HH · H =
[
h∗

11 h22
h∗

21 −h12

]
·
[
h11 h21
h∗

22 −h∗
12

]
=
[
h11h

∗
11 + h22h

∗
22 h∗

11h21 − h∗
12h22

h11h
∗
21 − h12h

∗
22 h21h

∗
21 + −h12h

∗
12

]

=
[

|h11|2 + |h22|2 h∗
11h21 − h∗

12h22
h11h

∗
21 − h12h

∗
22 |h21|2 + |h12|2

]
.

(2.12)

Inter-symbol-interference (ISI) is introduced, wherefore the decoding has to be adapted
as well. A decoding by multiplying with HH is no longer possible.
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3 Orthogonal STBC (OSTBC)
With the exception of a few special cases, OSTBC can only achieve a code-rate RC = 1

2
for four or more transmitters. Hence, to keep the generality, the encoding matrix can
be selected as

XOSTBC =



α1 α2 α3 α4
−α2 α1 −α4 α3
−α3 α4 α1 −α2
−α4 −α3 α2 α1
α∗

1 α∗
2 α∗

3 α∗
4

−α∗
2 α∗

1 −α∗
4 α∗

3
−α∗

3 α∗
4 α∗

1 −α∗
2

−α∗
4 −α∗

3 α∗
2 α∗

1


. (3.1)

Assuming quasi-static fading channels, the physical signal on the transmit channel ych
can be obtained by a multiplication with the channel vector as

ych = XOSTBC · h =



α1 α2 α3 α4
−α2 α1 −α4 α3
−α3 α4 α1 −α2
−α4 −α3 α2 α1
α∗

1 α∗
2 α∗

3 α∗
4

−α∗
2 α∗

1 −α∗
4 α∗

3
−α∗

3 α∗
4 α∗

1 −α∗
2

−α∗
4 −α∗

3 α∗
2 α∗

1


·


h1
h2
h3
h4

 =



α1h1 + α2h2 + α3h3 + α4h4
α1h2 − α2h1 + α3h4 − α4h3
α1h3 − α2h4 − α3h1 + α4h2
α1h4 + α2h3 − α3h2 − α4h1
α∗

1h1 + α∗
2h2 + α∗

3h3 + α∗
4h4

α∗
1h2 − α∗

2h1 + α∗
3h4 − α∗

4h3
α∗

1h3 − α∗
2h4 − α∗

3h1 + α∗
4h2

α∗
1h4 + α∗

2h3 − α∗
3h2 − α∗

4h1


.

(3.2)

Considering the derived expression for the physical signal on the channel, the trans-
mission can also be modelled using an equivalent channel matrix H. Accordingly,

y = H · α =



h1 h2 h3 h4
h2 −h1 h4 −h3
h3 −h4 −h1 h2
h4 h3 −h2 −h1
h∗

1 h∗
2 h∗

3 h∗
4

h∗
2 −h∗

1 h∗
4 −h∗

3
h∗

3 −h∗
4 −h∗

1 h∗
2

h∗
4 h∗

3 −h∗
2 −h∗

1


·


α1
α2
α3
α4

 =



y1
y2
y3
y4
y5
y6
y7
y8


=



ych,1
ych,2
ych,3
ych,4
y∗

ch,5
y∗

ch,6
y∗

ch,7
y∗

ch,8


. (3.3)
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3 Orthogonal STBC (OSTBC)

It is apparent, that the equivalent channel model corresponds to the actual signal if
the complex conjugate value is used for the last half of the received samples. Using
the equivalent channel model and exploiting the orthogonality of the encoding matrix
and thus the orthogonality of H, decoding can be performed by a multiplication with
HH . Thus,

α̂ = HH · y = HH · H · α. (3.4)

For an exemplary setup with four transmitters which are used to transmit four infor-
mation symbols, the matched multiplication than follows as

HH · H = Hm = 2 · (|h1|2 + |h2|2 + |h3|2 + |h4|2) ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.5)

It can easily be seen, that the terms which would cause ISI cancel out. Moreover, it is
worth denoting, that only the absolute values of the complex channel coefficients are
used. Thus, the superimposing is always constructive and never destructive, which is
the reason for the attainable transmit diversity gain.

If the transmit channels are assumed to be maximally time-variant instead of quasi-
static so that a different channel vector is used for each time slot, the physical signal
on the channel has to be expressed as

ych = XOSTBC · h(t) =



α1h11 + α2h21 + α3h31 + α4h41
α1h22 − α2h12 + α3h42 − α4h32
α1h33 − α2h43 − α3h13 + α4h23
α1h44 + α2h34 − α3h24 − α4h14
α∗

1h15 + α∗
2h25 + α∗

3h35 + α∗
4h45

α∗
1h26 − α∗

2h16 + α∗
3h46 − α∗

4h36
α∗

1h37 − α∗
2h47 − α∗

3h17 + α∗
4h27

α∗
1h48 + α∗

2h38 − α∗
3h28 − α∗

4h18


, (3.6)

whereas
h11 ̸= h12 ̸= h13 ̸= h14 ̸= h15 ̸= h16 ̸= h17 ̸= h18

h21 ̸= h22 ̸= h23 ̸= h24 ̸= h25 ̸= h26 ̸= h27 ̸= h28

h31 ̸= h32 ̸= h33 ̸= h34 ̸= h35 ̸= h36 ̸= h37 ̸= h38

h41 ̸= h42 ̸= h43 ̸= h44 ̸= h45 ̸= h46 ̸= h47 ̸= h48

(3.7)

in the general case. Thereby, the first index of h refers to the transmitter and the
second index to the time slot. The orthogonality is lost and ISI is introduced, wherefore
the decoding has to be adapted as well. A decoding by multiplying with HH is no
longer possible.
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4 Toeplitz STBC
Toeplitz STBC have been first introduced in [4]. Their major benefit is that they
achieve full diversity with a linear receiver and at the same time a higher code rate
than OSTBCs. Unfortunately, this superior behaviour is only valid for quasi-static flat
fading environments.
Motivated to design a linear space-time block code that minimizes the worst case
average pairwise error probability (PEP) and which asymptotically achieves the op-
timal diversity-multiplexing tradeoff derived in [5], the authors use a Toeplitz matrix
to convert flat fading MISO channels into a Toeplitz virtual MIMO channel. Thereby,
they rely on a Toeplitz matrix T(α, NI, K) generated by a vector (α) and a positive
integer (K) defined as

T(α, NI, K) =



α1 0 . . . 0
α2 α1 . . . 0
... α2

. . . ...
αNI

. . . . . . α1

0 . . . . . . α2
... . . . . . . ...
0 . . . 0 αNI


(4.1)

to generate the code. The Toeplitz space-time block code XTpltz(α), where α is the
vector containing the information symbols, is then defined as

XTpltz(α) = T(α, N, NTX) · A, (4.2)

while A is a NTX × NTX invertible matrix which is designed such that the PEP is
minimized when a maximum-likelihood (ML) detector is used. However, if the channels
are independent, any NTX × NTX unitary matrix can be employed. The proposed
Toeplitz STBC can achieve a higher code rate RC than OSTBC, which is

RC,Tpltz = NC − NTX + 1
NC

= 1 − NTX − 1
NC

. (4.3)

For a fixed number of transmit antennas NTX the code-rate Rc can approach 1 if the
block-length NC is sufficiently large, e. g. for NTX = 4, Rc(NC = 7) = 4

7 ≈ 57.14%
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4 Toeplitz STBC

and Rc(NC = 32) = 29
32 ≈ 90.63%.

The signal on the physical channel ych results from the multiplication of the encod-
ing matrix XTpltz(α) with the channel coefficient matrix H. Assuming independent
transmit channels with quasi-static frequency-flat Rayleigh-fading and a MISO setup,
the latter becomes a vector H 7→ h with NTX coefficients (h = (h1, h2, ...hNTX)T ).
Neglecting the additive white Gaussian noise (AWGN) on the channel without loss of
generality for better readability, the signal on the physical channel can be calculated
as

ych = XTpltz(α) · h = XTpltz(α) ·


h1
h2
...

hNTX

 . (4.4)

For decoding with a linear receiver, an equivalent channel matrix H is necessary. For
that, first h̃ is defined as

h̃ := A · h = A ·


h1
h2
...

hNTX

 =


h̃1

h̃2
...

h̃NTX

 . (4.5)

With h̃, the equivalent channel model follows as

y = T (h̃, NTX, NI)︸ ︷︷ ︸
H

·α =



h̃1 0 . . . 0
h̃2 h̃1 . . . 0
... h̃2

. . . ...
h̃NTX

. . . . . . h̃1

0 . . . . . . h̃2
... . . . . . . ...
0 . . . 0 h̃NTX


·


α1
α2
...

αNI

 . (4.6)

E. g. employing a linear zero-forcing (ZF) estimator, the received signals y can be
decoded by

α̂ZF = (HHH)−1 · HH · y, (4.7)

whereas using a linear minimum-mean-square-error (MMSE) estimator, the received
signals y can be decoded by

α̂MMSE =
(

INI + 1
σ2

n

· HHH
)−1

· HH · y. (4.8)
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4 Toeplitz STBC

It is characteristic for Toeplitz STBC, that the decoding rules stated in Equations
4.7 and 4.8 are sufficient to strive for full diversity. Nonetheless, this property is lost
in time-variant scenarios due to similar reasons as for the OSBTCs or the Alamouti
code.

4.1 Example

The following example, is based on a MISO setup consisting of four transmit antennas
(NTX = 4). Moreover, it is foreseen, that four information symbols are transmitted
(NTX = 4), so that α = [α1, α2, α3, α4]T . The block length NC is selected to be NC = 7,
so that NI = N = NC − NTX + 1 = 4 is fulfilled. Last, independent (uncorrelated)
and quasi-static Rayleigh fading transmit channels are assumed, whereas the additive
white Gaussian noise (AWGN) is neglected for reasons of simplicity.

For encoding, the Toeplitz matrix T (α, NTX, K) for the input symbol vector α is
necessary as well as a suitable matrix A. Starting with T (α, NI, K), the size of the
matrix which is defined as (K +NI−1)×K can be determined for the given setup with
NTX = N = NC−NTX+1 = 7−4+1 = 4 and K = NTX = 4 to be (4+4−1)×4 = 7×4.
Then, the particular Toeplitz matrix is

T (α, 4, 4) =



α1 0 0 0
α2 α1 0 0
α3 α2 α1 0
α4 α3 α2 α1
0 α4 α3 α2
0 0 α4 α3
0 0 0 α4


. (4.9)

Since independent (uncorrelated) transmit channels are assumed, any unitary matrix
of size NTX×NTX = 4×4 can be selected for A. However, for better comparability with
the example given for the LSDCs in Section 6.4, A is chosen to be the Fourier-Matrix
F, so that

A = F = fft


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


+1 +1 +1 +1
+1 −j −1 +j
+1 −1 +1 −1
+1 +j −1 −j

 . (4.10)

The overall encoding matrix XTpltz(α) is the result of the matrix multiplication be-
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4 Toeplitz STBC

tween T (α, N = 4, NTX = 4) and A. Thus, for the investigated setup XTpltz(α) is

XTpltz = T (α, 4, 4) · A =



α1 0 0 0
α2 α1 0 0
α3 α2 α1 0
α4 α3 α2 α1
0 α4 α3 α2
0 0 α4 α3
0 0 0 α4


·


+1 +1 +1 +1
+1 −j −1 +j
+1 −1 +1 −1
+1 +j −1 −j



=



α1 α1 α1 α1
α2 + α1 α2 − jα1 α2 − α1 α2 + jα1

α3 + α2 + α1 α3 − jα2 − α1 α3 − α2 + α1 α3 + jα2 − α1
α4 + α3 + α2 + α1 α4 − jα3 − α2 + jα1 α4 − α3 + α2 − α1 α4 + jα3 − α2 − jα1

α4 + α3 + α2 −jα4 − α3 + jα2 −α4 + α3 − α2 jα4 − α3 − jα2
α4 + α3 −α4 + jα3 α4 − α3 −α4 − jα3

α4 jα4 −α4 −jα4


.

(4.11)

So, antenna 1 transmits α1 in the first time slot, α2 +α1 in the second time slot and so
forth until it transmits α4 in the last time slot. Correspondingly, antenna 2 transmits
α1 in the first time slot, α2 −jα1 in the second time slot and so forth until it transmits
jα4 in the last time slot. Antenna 3 and 4 are used to transmit columns 3 and 4 of
the matrix.
As it becomes clear from XTpltz(α), in total 7 time slots are necessary to transmit 4
information symbols. Hence, the code rate RC is

RC,Tpltz = 4
7. (4.12)

Assuming independent fading on each transmit channel (h = [h1, h2, h3, h4]T ) and
neglecting the additive white Gaussian noise (AWGN), it follows for the signal on the
channel ych that

ych = XTpltz · h

=



α1h1 + α1h2 + α1h3 + α1h4
(α2 + α1)h1 + (α2 − jα1)h2 + (α2 − α1)h3 + (α2 + jα1)h4

(α3 + α2 + α1)h1 + (α3 − jα2 − α1)h2 + (α3 − α2 + α1)h3 + (α3 + jα2 − α1)h4
(α4 + α3 + α2 + α1)h1 + (α4 − jα3 − α2 + jα1)h2 + (α4 − α3 + α2 − α1)h3 . . .

. . . + (α4 + jα3 − α2 − jα1)h4
(α4 + α3 + α2)h1 + (−jα4 − α3 + jα2)h2 + (−α4 + α3 − α2)h3 + (jα4 − α3 − jα2)h4

(α4 + α3)h1 + (−α4 + jα3)h2 + (α4 − α3)h3 + (−α4 − jα3)h4
α4h1 + jα4h2 + −α4h3 + −jα4h4


.

(4.13)

11



4 Toeplitz STBC

With

h̃ := A · h =


+1 +1 +1 +1
+1 −j −1 +j
+1 −1 +1 −1
+1 +j −1 −j

 ·


h1
h2
h3
h4

 =


h1 + h2 + h3 + h4

h1 − jh2 − h3 + jh4
h1 − h2 + h3 − h4

h1 + jh2 − h3 − jh4

 , (4.14)

ych can be rewritten as

y = T (h̃, NTX, N)︸ ︷︷ ︸
H

·α =



h̃(1) 0 0 0
h̃(2) h̃(1) 0 0
h̃(3) h̃(2) h̃(1) 0
h̃(4) h̃(3) h̃(2) h̃(1)

0 h̃(4) h̃(3) h̃(2)
0 0 h̃(4) h̃(3)
0 0 0 h̃(4)


·


α1
α2
α3
α4

 , (4.15)

where
H =

(h1 + h2 + h3 + h4) 0 0 0
(h1 − jh2 − h3 + jh4) (h1 + h2 + h3 + h4) 0 0
(h1 − h2 + h3 − h4) (h1 − jh2 − h3 + jh4) (h1 + h2 + h3 + h4) 0

(h1 + jh2 − h3 − jh4) (h1 − h2 + h3 − h4) (h1 − jh2 − h3 + jh4) (h1 + h2 + h3 + h4)
0 (h1 + jh2 − h3 − jh4) (h1 − h2 + h3 − h4) (h1 − jh2 − h3 + jh4)
0 0 (h1 + jh2 − h3 − jh4) (h1 − h2 + h3 − h4)
0 0 0 (h1 + jh2 − h3 − jh4)


,

(4.16)
is the equivalent channel matrix. If maximally time-variant transmit channels are
assumed, thus if a different Rayleigh fading channel vector is used for every time-slot,
ych can be expressed as

ych = XTpltz · h(t)
ych (1) = α1(h11 + h21 + h31 + h41)
ych (2) = α1(h12 − jh22 − h32 + jh42) + α2(h12 + h22 + h32 + h42)
ych (3) = α1(h13 − h23 + h33 − h43) + α2(h13 − jh23 − h33 + jh43) . . .

+ α3(h13 + h23 + h33 + h43)
ych (4) = α1(h14 + jh24 − h34 − jh44) + α2(h14 − h24 + h34 − h44) . . .

+ α3(h14 − jh24 − h34 + jh44) + α4(h14 + h24 + h34 + h44)
ych (5) = α2(h15 + jh25 − h35 − jh45) + α3(h15 − h25 + h35 − h45) . . .

+ α4(h15 − jh25 − h35 + jh45)
ych (6) = α3(h16 + jh26 − h36 − jh46) + α4(h16 − h26 + h36 − h46)
ych (7) = α4(h17 + jh27 − h37 − jh47),

(4.17)
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4 Toeplitz STBC

where i denotes the transmit-antenna and T the time-slot in hiT . Accordingly, H has
to be adopted to

H (:, 1) =



(h11 + h21 + h31 + h41)
(h12 − jh22 − h32 + jh42)
(h13 − h23 + h33 − h43)

(h14 + jh24 − h34 − jh44)
0
0
0


H (:, 2) =



0
(h12 + h22 + h32 + h42)

(h13 − jh23 − h33 + jh43)
(h14 − h24 + h34 − h44)

(h15 + jh25 − h35 − jh45)
0
0



H (:, 3) =



0
0

(h13 + h23 + h33 + h43)
(h14 − jh24 − h34 + jh44)
(h15 − h25 + h35 − h45)

(h16 + jh26 − h36 − jh46)
0


H (:, 4) =



0
0
0

(h14 + h24 + h34 + h44)
(h15 − jh25 − h35 + jh45)
(h16 − h26 + h36 − h46)

(h17 + jh27 − h37 − jh47)


.

(4.18)
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5 Overlapped Alamouti Codes (OAC)
Overlapped Alamouti Codes (OAC) can achieve full-diversity with linear receivers [6]
and utilize a similar concept to the previously introduced Toeplitz STBC.
To construct the encoding matrix, first the authors define some ancillary matrices
which they denote as O(v, p, q) and E(v, p, q) of size (p + q − 1) × q where v is any
vector of length p. Furthermore, they use ancillary definitions of α which they refer
to as αo and αe.
The ancillary matrix O(v, p, q) of size (p + q − 1) × q for odd and even q is defined as

O(v, p, q) =



v∗
1 0 . . . 0

v∗
2 v1 . . . 0

v∗
3 v2 . . . 0
... ... . . . ...

v∗
p−1 vp−2 . . . v∗

1
v∗

p vp−1 . . . v∗
2

0 vp . . . v∗
3

... ... . . . ...
0 0 . . . v∗

p



and



v∗
1 0 . . . 0 0

v∗
2 v1 . . . 0 0

v∗
3 v2 . . . 0 0
... ... . . . ... ...

v∗
p vp−1 . . . v∗

1 0
0 vp . . . v∗

2 v1
... ... . . . ... ...
0 0 . . . v∗

p vp−1
0 0 . . . 0 vp



, (5.1)

while the ancillary matrix E(v, p, q) of size (p + q − 1) × q for odd and even q is

E(v, p, q) =



0 . . . 0 v1
0 . . . −v∗

1 v2
0 . . . −v∗

2 v3
... ... ... ...

v1 . . . −v∗
p−2 vp−1

v2 . . . v∗
p−1 vp

v3 . . . −v∗
p 0

... ... ... ...
vp . . . 0 0



and



0 0 . . . 0 v1
0 0 . . . −v∗

1 v2
0 0 . . . −v∗

2 v3
... ... ... ... ...
0 v1 . . . −v∗

p−1 vp

−v∗
1 v2 . . . −v∗

p 0
... ... ... ... ...

−v∗
p−1 vp . . . 0 0

−v∗
p 0 . . . 0 0



. (5.2)

Next, the ancillary vector αo which keeps all components of α with odd indexes is

αo =


(α1, 0, α3, 0, . . . , 0, αNI−1)T , NTX even, NI even
(α1, 0, α3, 0, . . . , 0, αNI−1, 0)T , NTX odd, NI even
(α1, 0, α3, 0, . . . , 0, αNI)T , NI odd

(5.3)
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5 Overlapped Alamouti Codes (OAC)

whereas the ancillary vector αe which keeps all components of α with even indexes is
denoted as

αe =


(α2, 0, α4, 0, . . . , 0, αNI)T , NTX even, NI even
(α2, 0, α4, 0, . . . , 0, αNI−1, 0, 0)T , NTX even, NI odd
(0, α2, 0, α4, 0, . . . , 0, αNI)T , NTX odd, NI even
(0, α2, 0, α4, 0, . . . , 0, αNI−1, 0)T , NTX odd, NI odd

. (5.4)

With those definitions in mind, the resulting overlapped Alamouti code matrix can
be calculated by

XOAC(α) =


O(αo, NI, NTX) + E(αe, NI, NTX), NTX odd
O(αo

∗, NI, NTX) + E(αe, NI, NTX), NTX even, NI odd
O(αo

∗, NI − 1, NTX) + E(αe, NI − 1, NTX), NTX even, NI even
.

(5.5)

It attracts attention, that each information symbol belongs to two 2 × 2 Alamouti
codes simultaneously except those on the leftmost and rightmost columns. This is
why the authors use the term overlapped in the naming of their proposed scheme.
Overlapped Alamouti Codes (OAC) can achieve a slightly higher rate RC than the
Toeplitz STBC when NTX and NI are even according to

RC =


NI
NI+NTX−2 , NTX and NI even

NI
NI+NTX−1 , otherwise

(5.6)

It is worth denoting, that the code-rate approaches 1 for a fixed number of transmit
antennas NTX if NI → ∞ or respectively NC → ∞, e. g. for NTX = 4, Rc(NC = 6) =
2
3 ≈ 66.67% and Rc(NC = 32) = 15

16 ≈ 93.75%.
The signal on the physical channel results from the multiplication of the encoding ma-
trix XOAC(α) with the channel matrix H. In accordance to the Toeplitz STBC, the
latter becomes a vector for independent transmit channels with quasi-static frequency-
flat Rayleigh-fading and a MISO setup (NRX = 1). Thus, H 7→ h with NTX coeffi-
cients, i. e. h = (h1, h2, ...hNTX)T . Again, neglecting the additive white Gaussian noise
(AWGN) on the channel without loss of generality for better readability, the signal
on the physical channel ych can be calculated by

ych = XOAC(α) · h = XOAC(α) ·


h1
h2
...

hNTX

 . (5.7)

For decoding with a linear receiver, an equivalent channel matrix H is necessary, so
that the received signal can be described by y = H · α. For the construction of H in
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5 Overlapped Alamouti Codes (OAC)

turn an ancillary matrix, denoted as FH(v, p, q), is employed. Thereby, for odd p and
odd and even q FH(v, p, q) is defined as

FH(v, p, q) =

v∗
1 0 . . . 0

v2 vp . . . 0
v∗

3 v∗
p−1 . . . 0

... ... . . . ...
vp−1 v3 . . . v∗

1
v∗

p −v∗
2 . . . v2

0 v1 . . . v∗
3

... ... . . . ...
0 0 . . . v∗

p



and



v∗
1 0 . . . 0 0

v2 vp . . . 0 0
v∗

3 −v∗
p−1 . . . 0 0

... ... . . . ... ...
v∗

p −v∗
2 . . . v∗

1 0
0 v1 . . . v2 vp
... ... . . . ... ...
0 0 . . . v∗

p −v∗
2

0 0 . . . 0 v1



,
(5.8)

where for even p and odd and even q FH(v, p, q) is

FH(v, p, q) =

v1 vp 0 0 . . . 0
v∗

2 −v∗
p−1 0 0 . . . 0

v3 vp−2 v1 vp . . . 0
... ... ... ... . . . ...

v∗
p −v∗

1 v∗
p−2 −v∗

3 . . . v1
0 0 vp−1 v2 . . . v∗

2
0 0 v∗

p −v∗
1 . . . v3

... 0 0 ... . . . ...
0 0 0 0 . . . v∗

p



and



v1 vp . . . 0 0
v∗

2 −v∗
p−1 . . . 0 0

... ... . . . ... ...
v∗

p−2 −v∗
3 . . . 0 0

vp−1 v2 . . . v1 vp

v∗
p −v∗

1 . . . v∗
2 −v∗

p−1
... ... . . . ... ...
0 0 . . . vp−1 v2
0 0 . . . v∗

p −v∗
1



.
(5.9)

With those definitions, H can be determined in general as

H = (H1
T , H2

T , . . . , HN
T )T with Hn = FH(hn, NTX, NI). (5.10)

Thereby, hn is the n-th column of the MIMO channel matrix H. In the MISO case
aforementioned definition simplifies to

H = (H1
T )T = H1 = FH(h, NTX, NI). (5.11)

It is worth denoting, that all odd columns are orthogonal to all even ones. Thus, the
interference between the transmitted symbols is significantly reduced. Moreover, it
should be mentioned that the output of the equivalent channel model y only corre-
sponds to the output of the physical channel ych if the conjugate complex value is
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5 Overlapped Alamouti Codes (OAC)

used for all even-indexed entries of latter, so that

y =



y1
y2
y3
y4
...

 =



ych,1
y∗

ch,2
ych,3
y∗

ch,4
...

 . (5.12)

In a quasi-static fading environment, OAC can achieve full diversity if a linear receiver
is used just like the Toeplitz STBC. However, this property is lost in case of a time-
variant fading scenario.

5.1 Example
According to the given example for the Toeplitz STBC in Section 4.1, the following ex-
ample is also based on a MISO setup consisting of four transmit antennas (NTX = 4).
In turn, it is foreseen, that four information symbols are transmitted (NI = 4), so that
α = [α1, α2, α3, α4]T .

Starting with the ancillary definitions of α, it can be denoted that

αo = (α1, 0, α3)T

αe = (α2, 0, α4)T
(5.13)

With that in mind as well as q = NTX = 4 and p = NI − 1 = 3 the ancillary matrix E
for αe of size (p + q − 1) × q = (3 + 4 − 1) × 4 = 6 × 4 can be directly constructed as

E(αe, 3, 4) =



0 0 0 αe,1
0 0 −α∗

e,1 αe,2
0 αe,1 −α∗

e,2 αe,3
−α∗

e,1 αe,2 −α∗
e,3 0

−α∗
e,2 αe,3 0 0

−α∗
e,3 0 0 0


=



0 0 0 α2
0 0 −α∗

2 0
0 α2 0 α4

−α∗
2 0 −α∗

4 0
0 α4 0 0

−α∗
4 0 0 0


. (5.14)

Similarly, the ancillary matrix O for α∗
o = [α∗

1, 0, α∗
3]T of same size can be composed

as

O(α∗
o, 3, 4) =



αo,1 0 0 0
αo,2 α∗

o,1 0 0
αo,3 α∗

o,2 αo,1 0
0 α∗

o,3 αo,2 α∗
o,1

0 0 αo,3 α∗
o,2

0 0 0 α∗
o,3


=



α1 0 0 0
0 α∗

1 0 0
α3 0 α1 0
0 α∗

3 0 α∗
1

0 0 α3 0
0 0 0 α∗

3


. (5.15)
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5 Overlapped Alamouti Codes (OAC)

Lastly, ancillary matrix FH which will be necessary to build the equivalent channel
matrix for p = NTX = 4, q = NI = 4 and h = [h1, h2, h3, h4]T of size (q + p − 2) × 4 =
(4 + 4 − 2) × 4 = 6 × 4 follows as

FH(h, NTX = 4, NI = 4) =



h1 h4 0 0
h∗

2 −h∗
3 0 0

h3 h2 h1 h4
h∗

4 −h∗
1 h∗

2 −h∗
3

0 0 h3 h2
0 0 h∗

4 −h∗
1


. (5.16)

Using the given construction rules for NTX and NI even, the overall encoding matrix
ONTX,NI results in

ONTX,NI = O4,4 = XOAC(α) = O(α∗
o, 3, 4) + E(αe, 3, 4)

=



α1 0 0 0
0 α∗

1 0 0
α3 0 α1 0
0 α∗

3 0 α∗
1

0 0 α3 0
0 0 0 α∗

3


+



0 0 0 α2
0 0 −α∗

2 0
0 α2 0 α4

−α∗
2 0 −α∗

4 0
0 α4 0 0

−α∗
4 0 0 0


=



α1 0 0 α2
0 α∗

1 −α∗
2 0

α3 α2 α1 α4
−α∗

2 α∗
3 −α∗

4 α∗
1

0 α4 α3 0
−α∗

4 0 0 α∗
3


.

(5.17)

So, antenna 1 transmits α1 in the first time-slot, nothing in the second time-slot,
α3 in the third time-slot and so forth until it transmits −α∗

4 in the last time-slot.
Correspondingly, antenna 2 transmits nothing in the first time-slot, α∗

1 in the second
time-slot, α2 in the third time-slot and so forth. Antenna 3 and 4 are used to transmit
columns 3 and 4 of the matrix.
As it becomes clear from O4,4, in total 6 time-slots are necessary to transmit 4 infor-
mation symbols. Hence, the code-rate is

RC,OAC = 4
6 = 2

3. (5.18)

Assuming a quasi-static frequency-flat Rayleigh fading transmit channel and ne-
glecting the noise and SNR scaling, the signal on the physical channel can be summa-
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rized as
ych = XOAC(α) · h

=



α1 0 0 α2
0 α∗

1 −α∗
2 0

α3 α2 α1 α4
−α∗

2 α∗
3 −α∗

4 α∗
1

0 α4 α3 0
−α∗

4 0 0 α∗
3


·


h1
h2
h3
h4

 =



α1h1 + α2h4
α∗

1h2 − α∗
2h3

α3h1 + α2h2 + α1h3 + α4h4
−α∗

2h1 + α∗
3h2 − α∗

4h3 + α∗
1h4

α4h2 + α3h3
−α∗

4h1 + α∗
3h4



=



α1h1 + α2h4
α∗

1h2 − α∗
2h3

α1h3 + α2h2 + α3h1 + α4h4
α∗

1h4 − α∗
2h1 + α∗

3h2 − α∗
4h3

α3h3 + α4h2
α∗

3h4 − α∗
4h1


.

(5.19)

Using the equivalent channel matrix H, i. e.

H = FH(h, NTX = 4, NI = 4) =



h1 h4 0 0
h∗

2 −h∗
3 0 0

h3 h2 h1 h4
h∗

4 −h∗
1 h∗

2 −h∗
3

0 0 h3 h2
0 0 h∗

4 −h∗
1


, (5.20)

this relation can also be expressed as

y = H · α =



h1 h4 0 0
h∗

2 −h∗
3 0 0

h3 h2 h1 h4
h∗

4 −h∗
1 h∗

2 −h∗
3

0 0 h3 h2
0 0 h∗

4 −h∗
1


·


α1
α2
α3
s4

 =



α1h1 + α2h4
α1h

∗
2 − α2h

∗
3

α3h1 + α2h2 + α1h3 + α4h4
−α2h

∗
1 + α3h

∗
2 − α4h

∗
3 + α1h

∗
4

α4h2 + α3h3
−α4h

∗
1 + α3h

∗
4



y =



α1h1 + α2h4
α1h

∗
2 − α2h

∗
3

α1h3 + α2h2 + α3h1 + α4h4
α1h

∗
4 − α2h

∗
1 + α3h

∗
2 − α4h

∗
3

α3h3 + α4h2
α3h

∗
4 − α4h

∗
1


=



ych,1
y∗

ch,2
ych,3
y∗

ch,4
ych,5
y∗

ch,6


.

(5.21)

Thus, the equivalent channel model (y = H · α) corresponds to the signal on the
physical channel if the conjugate complex value is used for all even-indexed entries of
the received vector.
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5 Overlapped Alamouti Codes (OAC)

Decoding, e. g. with a ZF-receiver can be performed by

α̂ = (HT · H)−1 · HT · y. (5.22)

If maximally time-varying transmit channels are assumed, i. e. if a different Rayleigh-
fading channel coefficient is used for every time-slot, the signal on the physical channel
can be expressed as

ych = XOAC · h(t) =



α1h11 + α2h41
α∗

1h22 − α∗
2h32

α1h33 + α2h23 + α3h13 + α4h43
α∗

1h44 − α∗
2h14 + α∗

3h24 − α∗
4h34

α3h35 + α4h25
α∗

3h46 − α∗
4h16


(5.23)

where i denotes the transmit-antenna and T the time-slot in hiT .

Decoding with a linear ZF-receiver is still possible if the equivalent channel matrix
H = Heq is adapted to

H =



h11 h41 0 0
h∗

22 −h∗
32 0 0

h33 h23 h13 h43
h∗

44 −h∗
14 h∗

24 −h∗
34

0 0 h35 h25
0 0 h∗

46 −h∗
16


. (5.24)

However, the superior diversity performance is lost.
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6 Linear Scalable Dispersion Codes
Linear Scalable Dispersion Codes (LSDCs or LSD codes) can achieve both, full di-
versity and full rate (RC = 1) at the same time. They were first proposed in [7]
in compound with an efficient suboptimal decoder [8]. In principal, LSDCs offer a
pure transmit diversity and spatial subchannel mode. Momentarily focusing on single-
antenna nodes, the focus is on the former, i. e. the number of subchannels is equal to
1 (NU = 1). Fundamentally, LSDCs utilize two linear, but decoupled codes which are
presented prior to discussing the appropriate communication model.

6.1 Inner Code Construction
The inner code Cν is linear, time-variant and used to adapt to the channel conditions
without a-priori channel knowledge. If the inner code was time-invariant, no trans-
mit diversity could be achieved in constant channels because all transmit symbols
would be affected by the same equivalent fading variable. In contrast, if the inner
code is time-variant, different transmit symbols are affected by different equivalent
fading variables. Thus a transmit diversity gain is possible, but typically an appropri-
ate outer code is required.
The simplest foreseen approach is to use antenna switching. Thereby, the different an-
tennas or, respectively, transmitters are activated at different time-slots ν and hence
the inner code matrix is built up with orthonormal unit vectors. However, this ap-
proach does not allow to utilize an SNR gain in a distributed setup, wherefore it is
actually limited to co-located antennas at a single node.
Hence, a more sophisticated inner code matrix can be obtained by utilizing a Fourier
matrix F which the authors claim has empirically proven to be a good choice. For
that, the first NTX columns of the Ndim × Ndim Fourier Matrix F are used. In other
words, the Ndim × Ndim Fourier Matrix F can be obtained by calculating the fast
Fourier transform (FFT) of an Ndim × Ndim identity matrix, so that

F = fft


1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1


Ndim×Ndim

. (6.1)

However, this is still an suboptimal choice. In actuality, the inner code vector has to
be carefully chosen, since there can be critical channel realizations.
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6 Linear Scalable Dispersion Codes

6.2 Outer Code Construction
The outer code R is linear, too, but time-invariant and optimized for diversity per-
formance. It is decoupled from the inner code and thus from the channel conditions,
so that it does not require any a-priori channel knowledge.
In principal, it is a matrix of size NC × NI, whereas a NI × NI identity matrix can be
used for uncoded transmission. To obtain more sophisticated results, the outer code is
constructed by optimizing a cost function. For the latter, the authors chose the aver-
aged pairwise probability of message error (MaxPairMER), which is the largest fading
averaged error probability of all (MNI − 1) · MNI pairs of input symbol vectors. It is
obvious, that this cost-function depends on the input symbol alphabet whose size is
M . Moreover, the authors required the outer code R to be orthonormal (RH ·R = I),
so that an orthonormal transformation preserves the Euclidean distance and thus the
error performance on an AWGN channel for co-located antennas at a single-node. In
addition, the authors preferred the outer code R to be a cyclic matrix for symmetry
and complexity reasons. Considering all these frame conditions, excellent results can
be obtained by

h[n] = 1√
NC

·
NC∑
k=1

e
j·2π·acc· (k−1)2

N2
C · e

j·2π· (k−1)·(n−1)
NC . (6.2)

where h = R[:, 1]. Besides, h in this context is the cyclic impulse response of a chirp
filter and the parameter acc is determined such that the cost function is minimized
for given NI, NC and input symbol alphabet.
The code rate RC is determined by NI and NC, i. e.

RC,LSDC = NI

NC
. (6.3)

Typically, NI = NC is chosen, so that full rate can be achieved. However, a simple
modification is possible by adding or deleting columns of the outer code matrix. Fig-
uratively speaking, the square matrix which is necessary for a full rate (RC = 1) code
is converted to a rectangular matrix. Apparently, the more rectangular the matrix
is, the lower the code rate RC becomes. Although a full rate is desirable, it can be
advantageous to choose NC > NI to achieve a better BER vs. SNR or, respectively,
BER vs. Eb

N0
performance.

6.3 Communication Model
For encoding, first the input symbol vector α with NI elements is multiplied with the
outer code matrix R of size NC × NI to obtain the transmit symbol vector αTX with
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6 Linear Scalable Dispersion Codes

NC elements. This can be expressed as

αTX = R · α
αTX,1
αTX,2

...
αTX,NC

 =


R1,1 R1,2 . . . R1,NI

R2,1 R2,2 . . . R2,NI... ... ... ...
RNC,1 RNC,2 . . . RNC,NI

 ·


α1
α2
...

αNI

 .
(6.4)

In each time-slot ν one element of αTX is used for further processing. Thereby, each
element is multiplied with the corresponding inner code vector cν . Thus, the transmit
symbols can be given as

αν=1 = c1 · αTX,1

αν=2 = c2 · αTX,2
... = ...

αν=NC = cNC · αTX,NC .

(6.5)

With that the overall LSDC encoding matrix can be composed as

XLSDC =


(αν=1)T

(αν=2)T

...
(αν=NC)T

 . (6.6)

Assuming independent transmit channels with quasi-static frequency-flat Rayleigh-
fading and neglecting the noise on the channel without loss of generality for better
readability, the signal on the physical channel can be calculated by

ych = XLSDC · h = XLSDC ·


h1
h2
...

hNTX

 . (6.7)

In order to decode the received symbols, it is necessary to express this relation with
an equivalent channel model, so that a matched received symbol vector ym can also
be described as

ym = ΛISI · α. (6.8)

Thereby, ΛISI denotes a correlation matrix which summarizes the encoding with the
outer and inner code, the impact of the channel and the corresponding equalization.
As an intermediate step, ΛISI can be expressed as

ΛISI = RH · D · R. (6.9)
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6 Linear Scalable Dispersion Codes

D in turn is a diagonal matrix whose elements can be calculated by

D(ν, ν) = cH
ν · h · hH · cν = ||hH · cν ||2

D =


||hH · c1||2 0 . . . 0

0 ||hH · c2||2 . . . 0
... ... . . . ...
0 0 . . . ||hH · cNTX||2

 .
(6.10)

The diagonal elements of D are the equivalent fading variables utilized by the outer
code. Moreover, it becomes obvious from this description that for each time-slot (rep-
resented as a row of the matrix) a different channel vector h 7→ hν can be used if
time-variant channels are assumed. Thus, LSD codes directly consider this kind of
fading scenario in their design, wherefore no performance degradation is to be ex-
pected.

The fading on the transmit channels causes intersymbol interference (ISI), whereas
the latter is linear and represented by ΛISI. To compensate this ISI a decoder using
an equalization method is needed. Naturally, a maximum-likelihood (ML) decoder is
optimal for that interference cancellation. However, the complexity of the ML-decoder
increases exponentially with NI and the input symbol alphabet size M , wherefore such
a receiver architecture is only feasible for small NI and M . Consequently, only subop-
timal methods are of practical use and due to the linearity of the code many different
known ISI decoders can be applied. These all have in common, that they are subop-
timal and introduce a tradeoff between complexity and performance. Additionally to
the existing decoders, the authors proposed a further suboptimal reduced complexity
decoder which they refer to as maximum a-posteriori minimum mean-square error
decision feedback equalizer (MAP-MMSE-DFE). However, the received symbol vec-
tor ych = yrx cannot be directly forwarded to the decoder, but has to be correlated
before. Accordingly, each element of yrx is first multiplied with the matched channel
vector hH and thereafter with the matched corresponding inner code vector cν . Fi-
nally, the channel and inner code correlated received symbol vector is multiplied with
the matched outer code matrix RH to obtain the overall matched received symbol
vector ym which then can be decoded with the MAP-MMSE-DFE. This proceeding
can be denoted as

ym = RH ·


cH

1 · hH · ych,1
cH

2 · hH · ych,2
...

cH
NTX

· hH · ych,NC

 . (6.11)

In addition to the correlated received symbol vector ym, the employed MAP-MMSE-
DFE requires knowledge about the correlation matrix ΛISI, the variance of the input
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6 Linear Scalable Dispersion Codes

symbols σ2
α, the noise variance σ2

n, the number of the input symbol vector elements
NI and the user defined decision threshold pe,THRES. Thereby, the correlation matrix
ΛISI has to be calculated at the receiver using the obtained knowledge about the
channel and the a-priori available knowledge about the outer and inner code. The
variance of the input symbols σ2

α is typically also known a-priori at the receiver just
like the number of the input symbol vector elements NI. Normally, the noise variance
σ2

n cannot be known a-priori which is why it has to be estimated. Lastly, the user
defined decision error probability threshold pe,THRES has to be set. If pe,THRES = 0, in
each iteration, only one symbol is decoded. In contrast, if pe,THRES is increased, the
complexity can be reduced equivalent to that of a linear MMSE-receiver.

6.4 Example
To match with the given examples for Toeplitz STBC and Overlapped Alamouti Codes
in Sections 4.1 and 5.1 respectively, the following example is also based on a MISO
setup consisting of four transmit antennas (NTX = 4 and NRX = 1). For reasons of
better comparability, it is foreseen to transmit four information symbols in four time
slots, which will enable full code rate (Nc = NI = 4). Lastly, independent, quasi-static
frequency-flat Rayleigh fading transmit channels are assumed.

Because Nc = NI = 4, the outer code matrix R becomes a 4×4 square matrix. One
numerically optimized complex solution is

R =


R1,1 R1,2 R1,3 R1,4
R2,1 R2,2 R2,3 R2,4
R3,1 R3,2 R3,3 R3,4
R4,1 R4,2 R4,3 R4,4



=


0.3192 − 0.0001j 0.0496 + 0.6597j 0.4078 − 0.4454j 0.2234 − 0.2142j
0.0496 + 0.6597j 0.4078 − 0.4454j 0.2234 − 0.2142j 0.3192 − 0.0001j
0.4078 − 0.4454j 0.2234 − 0.2142j 0.3192 − 0.0001j 0.0496 + 0.6597j
0.2234 − 0.2142j 0.3192 − 0.0001j 0.0496 + 0.6597j 0.4078 − 0.4454j

 .

(6.12)

For reasons of simplicity, in the following the indexed writing of the individual elements
will be used rather than the concrete numeric values.
As already mentioned in the code construction, one empirically good choice for the
inner code matrix Cν is the Fourier matrix, i. e.

Cν = F = fft


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


+1 +1 +1 +1
+1 −j −1 +j
+1 −1 +1 −1
+1 +j −1 −j

 . (6.13)
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6 Linear Scalable Dispersion Codes

In each time slot ν one column of the Fourier matrix Cν is used and represents the
inner code vector cν . Hence, there is a different inner code vector for each time slot,
the inner code is time-variant. In total 4 time slots are necessary to transmit the 4
information symbols, so that the inner code vector cν for each time slot (ν = 1, 2, 3, 4)
can be denoted as

c1 =


+1
+1
+1
+1

 ; c2 =


+1
−j
−1
+j

 ; c3 =


+1
−1
+1
−1

 ; c4 =


+1
+j
−1
−j

 . (6.14)

First of all, the input symbol vector α which contains the information symbols is
multiplied with the outer-code matrix. The result, referred to as αTX, is then

αTX = R · α

=


R1,1 R1,2 R1,3 R1,4
R2,1 R2,2 R2,3 R2,4
R3,1 R3,2 R3,3 R3,4
R4,1 R4,2 R4,3 R4,4

 ·


α1
α2
α3
α4

 =


R1,1 · α1 + R1,2 · α2 + R1,3 · α3 + R1,4 · α4
R2,1 · α1 + R2,2 · α2 + R2,3 · α3 + R2,4 · α4
R3,1 · α1 + R3,2 · α2 + R3,3 · α3 + R3,4 · α4
R4,1 · α1 + R4,2 · α2 + R4,3 · α3 + R4,4 · α4

 .

(6.15)

In each time-slot ν = 1, 2, 3, 4 one symbol of αTX is transmitted. Hence, it can be
denoted that

αTX,1 = R1,1 · α1 + R1,2 · α2 + R1,3 · α3 + R1,4 · α4,
αTX,2 = R2,1 · α1 + R2,2 · α2 + R2,3 · α3 + R2,4 · α4,
αTX,3 = R3,1 · α1 + R3,2 · α2 + R3,3 · α3 + R3,4 · α4 and
αTX,4 = R4,1 · α1 + R4,2 · α2 + R4,3 · α3 + R4,4 · α4.

(6.16)

Thereafter, the symbols to be transmitted αν in the ν-th time-slot can be obtained
by multiplying αTX with the corresponding inner-code vector cν , i. e.

αν=1 = αTX,1 · c1 = αTX,1 ·


+1
+1
+1
+1

 =


αν=1,1
αν=1,2
αν=1,3
αν=1,4

 ,

αν=2 = αTX,2 · c2 = αTX,2 ·


+1
−j
−1
+j

 =


αν=2,1
αν=2,2
αν=2,3
αν=2,4

 ,

αν=3 = αTX,3 · c3 = αTX,3 ·


+1
−1
+1
−1

 =


αν=3,1
αν=3,2
αν=3,3
αν=3,4

 and

(6.17)
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6 Linear Scalable Dispersion Codes

αν=4 = αTX,4 · c4 = αTX,4 ·


+1
+j
−1
−j

 =


αν=4,1
αν=4,2
αν=4,3
αν=4,4

 . (6.18)

Finally, the overall encoding matrix XLSDC can be summarized as

XLSDC(α) =


(αν=1)T

(αν=2)T

(αν=3)T

(αν=4)T

 =


αν=1,1 αν=1,2 αν=1,3 αν=1,4
αν=2,1 αν=2,2 αν=2,3 αν=2,4
αν=3,1 αν=3,2 αν=3,3 αν=3,4
αν=4,1 αν=4,2 αν=4,3 αν=4,4

 . (6.19)

The signal on the physical channel results from the multiplication of the encoding
matrix XLSDC with the channel vector h = (h1, h2, ...hNTX)T . Neglecting the additive
white Gaussian noise (AWGN) on the channel without loss of generality for better
readability, the signal on the physical channel can be calculated as

ych = XLSDC · h = XLSDC ·


h1
h2
h3
h4

 =


ych,1
ych,2
ych,3
ych,4

 . (6.20)

Regardless of the used decoder, the received symbol vector ych = yrx cannot be
directly forwarded, but has to be correlated before. For this example, this correlation
process can be denoted as

ym = RH ·


cH

1 · hH · ych,1
cH

2 · hH · ych,2
cH

3 · hH · ych,3
cH

4 · hH · ych,4

 =


R∗

1,1 R∗
2,1 R∗

3,1 R∗
4,1

R∗
1,2 R∗

2,2 R∗
3,2 R∗

4,2
R∗

1,3 R∗
2,3 R∗

3,3 R∗
4,3

R∗
1,4 R∗

2,4 R∗
3,4 R∗

4,4

 ·


cH

1 · hH · ych,1
cH

2 · hH · ych,2
cH

3 · hH · ych,3
cH

4 · hH · ych,4

 . (6.21)

Accordingly, the correlation matrix ΛISI follows as

D(ν, ν) = cH
ν · h · hH · cν = ||hH · cν ||2

D =


||hH · c1||2 0 0 0

0 ||hH · c2||2 0 0
0 0 ||hH · c3||2 0
0 0 0 ||hH · c4||2

 .
(6.22)
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